
 How we trained our network
About OpenStreetMap and the San Jose
Transportation Department

OSM: OpenStreetMap is a free editable map of
the world, and can be converted into SUMO
streets (map.net.xml). Also contains
information about the intersection system.

JOSM: JOSM is a free software desktop editing
tool for OpenStreetMap geodata (Java). This is
directly compatible with SUMO.

SJ Department of Transportation: Oversees
transportation quality and services. We spoke
with Ms. Lily Lim-Tsao, Traffic Operations
Manager. She talked to us about current traffic
solutions and gave us realistic data for our
simulated traffic flow.

Reinforcement learning is a self-teaching/learning system that learns by trial and error; changes actions by
trying to maximize its rewards; our reward system looks for the improvement between traffic phases.

19 State Inputs
● rate- The cars that have passed the traffic light over the number of steps

the tL has spent in that phase (1 Value)
● halt - # of halted cars at the traffic light in each lane (16)
● phase_time- # of steps a traffic light has spent in the current phase (1)
● curr_phase- The current state the traffic light is showing (1)

Next_State
● Advances state following an action to compute:

Reward
● Computed after agent acts to judge

improvements of its decision
● Determined based on the improvement in the

amount of cars halted and passing through

* Seed - a reproducible
set of random
probabilities that controls
the amount of cars
launched in the program

Reward Function

Our prototype shows that it is
feasible and cost-efficient to
create an AI Traffic Controller.

We used USB addressable LEDs, arcade buttons,
various python libraries, and more to create our x86

embedded system that models Blossom Hill Rd.
and Meridian Ave. As needed, we drilled, soldered,

and assembled our various acrylic panels and
electronic components.

Simple USB cameras can be
connected to the board to recognize
and count cars in a specific direction
and lane. There are many
open-sourced resources (like
openCV or YOLO AI object detection)
for this car object recognition. This
can replace Induction loops are very
expensive, high maintenance, and
have limited range. This solution
would help reduce cost, labor, and
inefficiencies at the intersection.

Microprocessor board
around $250

Runs on 5V USB
Power Supply

● SUMO - Simulation of
Urban Mobility
○ Simulation of vehicles moving through a

network of roads

● TraCI - Traffic Control Interface
○ Python interface to SUMO; Can retrieve values of simulated

objects and manipulate its behavior
○ Has GUI for visualization

The GUI of a run, with
the center depicting

a tL, the colors
indicate its Phase.

(rrrgrGGrgrrrrgrGGrgr)

Improvements From Last Year

Realistic Intersection: Last year, we had a simple 2-Way Intersection that had no
turn lanes and only 4 light phases. This year, we used OpenStreetMap to generate a
real 4-Way Intersection (Blossom Hill Rd. and Meridian Ave.) that contained 16 light
phases (including yellow).

Reinforcement vs Supervised: We decided to switch to
the cutting-edge machine learning technique,
reinforcement learning, due to the complexity of
supervised learning on a larger-scaled street.

Real Data: We talked to a traffic engineer to ensure that
our environment was accurate. Our simulation’s traffic
flow emulates morning rush hour on this street using
probabilities from San Jose’s traffic control database.

Current Simulated
Street

Last Year’s
Simulated

Project

Green for… NL NT NR EL ET ER SL ST SR WL WT WR
Traffic from N GG G gG rr r gr rr r gr rr r gr
Traffic from E rr r gr GG G gG rr r gr rr r gr
Traffic from W rr r gr rr r gr GG G gG rr r gr
Traffic from S rr r gr rr r gr rr r gr GG G gG
Traffic turning left (N → E,
S → W)

GG r gr rr r gr GG r gr rr r gr

Traffic straight (N↔S) rr G gG rr r gr rr G gG rr r gr
Traffic turning left (E → S,
W → N)

rr r gr GG r gr rr r gr GG r gr

Traffic straight (E↔W) rr r gr rr G gG rr r gr rr G gG

Turns: [r, G, g] + [r, G] Throughs: [r, G]
r = red
G = protected green
g = default green (not priority)

Traffic Light Phases

Since East and West
left turn lanes are
green, the phase is
rrrgrGGrgrrrrgrGGrgr

* All traffic phases also
have matching phases
for the yellow light (Yy
replace Gg)*
Ex. grryygrrrrgrryygyyyy

OSM and JOSM
(street covert/editing)

Satellite View SUMO Simulated View
N E

SW

N E

SW
OSM View JOSM Editor

NetConvert Utility
(creates TrACI .xml)

About Traci + SUMO
How did we collect the traffic data needed?

Research
What is the problem we are trying to solve?

44%

5.7

“On-road vehicles are responsible for1
1144 percent of all carbon dioxide 1
11emissions in the United States. ”

“ Congestion results in 5.7 billion
 person-hours of delay annually

11in the United States. ”

$1160 “The average cost of the time lost in1
11rush hour traffic is $1160 per person.”

Name Summary What we do Differently and Drawbacks

Verizon “Smart roads are possible thanks
to intelligent traffic systems that
use data… cost-effectively… (and)
cellular communications to assess
system performance in near real
time.”

- Primarily uses/focuses on the
Internet of Things (IOT)

- Difficult to install

Connected
Signals

“delivers real-time, predictive
traffic signal data. Their engineers
have developed sophisticated
techniques to predict upcoming
signal states.”

- Does not change the light;
adapts map directions based
on light

- Does not improve commute
time significantly

Surtrac “can do it cost-effectively using
cellular communications to assess
system performance in near real
time.”

- Does not use simulations to
quicken the duration of the
data-collecting phase

- Inactive since April 2017

 Existing Solutions

We need an
Artificially

intelligent Traffic
Controller (AiTC)

Must improve the
rate of cars/hour

by a sufficient
amount

Must have the
capabilities to direct
randomized traffic

flow patterns

Must be able to be
implemented in a
feasible manner

Software must be
able to be run and
make decisions in

real time

Training + Testing AiTC
How did we create and test our algorithm?

Reinforcement Q Learning Model Architecture

Layer 1

Layer 2
Output Layer

● We create a neural network that allows us to take
future rewards into account in our training.

● This network allows us to get a better computation
of the reward value based on predicting benefits
○ Discount Factor = Self.gamma = 0.94

● Each Epoch contains a maximum of 1204 simulation steps
○ Reward Calculated a max. of 172 times

● Every 7 time steps, a reward is calculated and the phase is updated
○ Longer than the timing of a yellow light
○ Enough data to be useful to the training
○ Phase is long enough to let cars pass

● Reinforcement Learning vs. Supervised Learning
○ Determines labeling of good vs. bad on its own
○ Trains at a slower rate

● Why a Categorical Model Architecture?
○ 8 outputs

■ Since it is categorical, both outputs do not have to equal one
● More accurate

● Exploration Rate is
the rate at which
our program will
output a random
value

● Starts with all
outputs being
randomized;
slowly decreases
until almost all
actions are
generated by AI

Learner Class in DQN.py

By customizing our reinforcement learning
model and using multiple outputs, we

optimized the capabilities and speed of our
model and the traffic light system

● Q-Value = 8 outputs =
categorical model
○ Largest value

determines highest
probability of
producing most
successful state

Input Layer

19
 In

pu
ts

0

1

13

14

60
4 N

od
es

 (H
id

de
n)

0

1

602

603

116
6

No
de

s (
Hi

dd
en

)

1 -1 0 1
Reward Next Rewards

1 -1 x0.94 0 x0.942 1 x0.943

Time vs. factor of
prediction discounting

f(x) = 0.94x

≈0.89 γ2 γ3 γ4
Q (Replay) Neural
Network created

and used for
additional training

Epochs passed vs
self exploration rate

f(x) = 0.999995x

0

1

2

3

4

5

6

7

Action: Agent will
choose which traffic
light pattern to use
based on current
traffic environment

Weighted Connections =
Nodes =

SUMO creates a
randomly seeded
environment, and
implements the action.

Training Progress Reported at Each Epoch
Predictor: How many times the agent acts on environment
Map Seed: Repeatable, uniquely generated traffic flow
Passed: Cars passing through junction
End Sim Step: Time when all cars reach end of road (max. 1204)
Lost Time: Avg. time lost for all simulated cars
Reward: Rt = Σγiri (γ = discount factor; t = 7i)
Cars Left: Cars still on road after time ends
Performance: End Sim Step x Lost Time

Key Concepts of
Reinforcement Learning
Environment: Simulation or real world
where the measured events take place.
Observations: Simulator or sensor data
extracted from the environment.
State: Observations of the environment
at a particular point in time.
Agent: Takes action based on observed
environment to improve future state.
Action: something the agent does to
change the environment.

The agent observes the
current simulation after

changing the
environment and

generates a reward.

Agent

Action
Environment

Observations

State

Random*

Next State

Seed

Reward*

Every n time steps,
the agent gets input
values from its
current state.

*When Training

Training M
ethodology

0

1

1164

1165

Tuning + Optimization
What is our design, debug, and test process?

Results + Conclusion
How well does AiTC work? What is next?

● Failsafe function for rare unexpected or
unresponsive action

● Debug Commands
○ Command Line Switches/Logs
○ Printing statements with Verbose levels

● Tuning
○ GUI-mode for visual confirmation
○ Program uses constants and procedures for easy

modification of key functions
○ Clean simulation to remove warnings and make

behavior more realistic
○ Precise commenting for readability

How We Programmed AiTC

Cmd Line: aitc.py -h

Failsafe function

Score = (avgWaitFIX * tripTimeFIX) / (avgWaitAI * tripTimeAI)

Results
We ran a diverse number of simulations.
Our figure of merit (score) combines the

average time loss and the time needed for all
trips to be completed.

AiTC provides 1.26x (avg) improvement
in quality score compared to current

fixed timing traffic lights.

Implementation
In order for AiTC to work, we will need to have a camera and a
processing unit that can recognize and count vehicles.

Input from
camera

Takes in current
state and sent to

agent for inference

AI computes
phase output

action

Traffic light acts
upon AI’s

instructions

Counts cars

Since many lights have already installed
cameras, we can use object recognition systems

to count cars waiting at an intersection.

Our research illustrates that even implementing separate,
unconnected neural networks dramatically reduces traffic in a

given area. Installing such versatile programs are both cost-
efficient and feasible, serving as a firm stepping stone on the

arduous journey towards an omniscient traffic light system.

Big Idea - Why does this matter?

A common misconception is that neural networks can only be
beneficial if multiple traffic lights are linked together, creating
an interconnected system.

Such projects, despite being the panacea of all
traffic-related issues, are expensive and time-consuming.

● Larger variety of streets
○ Train the AI to work on more uncommon streets

● Try more advanced AI techniques
○ Adversarial, Policy-Based, Combination of multiple?
○ Allow more flexibility with reward system

■ Based on end result/outcome
■ Determines reward of each action by itself

● Multiple intersections next to each other to simulate city
○ Train with connected intersections

■ Intersections communicate with each other
○ Test compatibility

● Incorporate accidents, emergency vehicles, etc.
○ Give priority when needed

● Reach out to researchers/Publicize for feedback
○ Already shared on GitHub

 Future Research

Pedestrian
crossings

Freeway exits
and entrances

Emergency
Vehicles

AI Techniques for
winning complex
games are applicable
to traffic optimization

Bibliography

● “SUMO at a Glance.” SUMO - Simulation of Urban Mobility,
www.sumo.dlr.de/userdoc/Sumo_at_a_Glance.html.

● Morgan, Lee, and Leaf Group. “The Effects of Traffic Congestion.” USA Today, Gannett Satellite Information
Network, traveltips.usatoday.com/effects-traffic-congestion-61043.html.

● “Keras: The Python Deep Learning Library.” Keras Documentation, keras.io/.

● Gao, Bo. Traffic Control Test Bed Documentation, 10 Mar. 2017,
intelaligent.github.io/tctb/post-learning-traci-tls.html.

● Amini, Alexander. “Deep Reinforcement Learning MIT 6.S191.” MIT EECS
introtodeeplearning.com/materials/2019_6S191_L5.pdf

● “How Do Traffic Signals Work?” How Do Traffic Signals Work?,
www.traffic-signal-design.com/how_do_traffic_signals_work.htm.

● Python: Package TraCI, www.sumo.dlr.de/daily/pydoc/traci.html.

Using Reinforcement Learning in Detection
Systems to Modernize Traffic Control Algorithms

