
 How we trained our network
About OpenStreetMap and the San Jose 
Transportation Department

OSM: OpenStreetMap is a free editable map of 
the world, and can be converted into SUMO 
streets (map.net.xml). Also contains 
information about the intersection system.

JOSM:  JOSM is a free software desktop editing 
tool for OpenStreetMap geodata (Java). This is 
directly compatible with SUMO.

SJ Department of Transportation: Oversees 
transportation quality and services. We spoke 
with Ms. Lily Lim-Tsao, Traffic Operations 
Manager. She talked to us about current traffic 
solutions and gave us realistic data for our 
simulated traffic flow. 

Reinforcement learning is a self-teaching/learning system that learns by trial and error; changes actions by 
trying to maximize its rewards; our reward system looks for the improvement between traffic phases.

19 State Inputs
● rate- The cars that have passed the traffic light over the number of steps  

the tL has spent in that phase (1 Value)
● halt - # of halted cars at the traffic light in each lane (16)
● phase_time- # of steps a traffic light has spent in the current phase (1)
● curr_phase- The current state the traffic light is showing (1)

Next_State
● Advances state following an action to compute:

Reward
● Computed after agent acts to judge 

improvements of its decision
● Determined based on the improvement in the 

amount of cars halted and passing through

* Seed - a reproducible 
set of random 
probabilities that controls 
the amount of cars 
launched in the program

Reward Function

Our prototype shows that it is 
feasible and cost-efficient to 
create an AI Traffic Controller. 

We used USB addressable LEDs, arcade buttons, 
various python libraries, and more to create our x86 

embedded system that models Blossom Hill Rd. 
and Meridian Ave. As needed, we drilled, soldered, 

and assembled our various acrylic panels and 
electronic components.

Simple USB cameras can be 
connected to the board to recognize 
and count cars in a specific direction 
and lane. There are many 
open-sourced resources (like 
openCV or YOLO AI object detection) 
for this car object recognition. This 
can replace Induction loops are very 
expensive, high maintenance, and 
have limited range. This solution 
would help reduce cost, labor, and 
inefficiencies at the intersection.

Microprocessor board 
around $250

Runs on 5V USB 
Power Supply

● SUMO - Simulation of 
Urban Mobility
○ Simulation of vehicles moving through a 

network of roads

● TraCI - Traffic Control Interface 
○ Python interface to SUMO; Can retrieve values of simulated 

objects and manipulate its behavior
○ Has GUI for visualization

The GUI of a run, with 
the center depicting 

a tL, the colors 
indicate its Phase.

(rrrgrGGrgrrrrgrGGrgr) 

___________________________________________________
Improvements From Last Year

Realistic Intersection: Last year, we had a simple 2-Way Intersection that had no 
turn lanes and only 4 light phases. This year, we used OpenStreetMap to generate a 
real 4-Way Intersection (Blossom Hill Rd. and Meridian Ave.) that contained 16 light 
phases (including yellow).

Reinforcement vs Supervised:  We decided to switch to 
the cutting-edge machine learning technique, 
reinforcement learning, due to the complexity of 
supervised learning on a larger-scaled street.

Real Data: We talked to a traffic engineer to ensure that 
our environment was accurate. Our simulation’s traffic 
flow emulates morning rush hour on this street using 
probabilities from San Jose’s traffic control database.

Current Simulated 
Street

Last Year’s 
Simulated 

Project

Green for… NL NT NR EL ET ER SL ST SR WL WT WR
Traffic from N GG G gG rr r gr rr r gr rr r gr
Traffic from E rr r gr GG G gG rr r gr rr r gr
Traffic from W rr r gr rr r gr GG G gG rr r gr
Traffic from S rr r gr rr r gr rr r gr GG G gG
Traffic turning left (N → E, 
S → W)

GG r gr rr r gr GG r gr rr r gr

Traffic straight (N↔S) rr G gG rr r gr rr G gG rr r gr
Traffic turning left (E → S, 
W → N) 

rr r gr GG r gr rr r gr GG r gr

Traffic straight (E↔W) rr r gr rr G gG rr r gr rr G gG

Turns: [r, G, g] + [r, G] Throughs: [r, G]
r = red
G = protected green
g = default green (not priority)

Traffic Light Phases

Since East and West 
left turn lanes are 
green, the phase is 
rrrgrGGrgrrrrgrGGrgr

* All traffic phases also 
have matching phases 
for the yellow light (Yy 
replace Gg)*
Ex. grryygrrrrgrryygyyyy

OSM and JOSM 
(street covert/editing)

Satellite View SUMO Simulated View
N E

SW

N E

SW
OSM View      JOSM Editor

NetConvert Utility
(creates TrACI .xml)

About Traci + SUMO
How did we collect the traffic data needed?

Research
What is the problem we are trying to solve?

44%

5.7

“On-road vehicles are responsible for1   
1144 percent of all carbon dioxide 1    
11emissions in the United States. ”

“ Congestion results in 5.7 billion
   person-hours of delay annually

11in the United States. ”

___________________________________________________

___________________________________________________

$1160 “The average cost of the time lost in1 
11rush hour traffic is $1160 per person.”

Name Summary What we do Differently and Drawbacks

Verizon “Smart roads are possible thanks 
to intelligent traffic systems that 
use data… cost-effectively…  (and) 
cellular communications to assess 
system performance in near real 
time.”

- Primarily uses/focuses on the 
Internet of Things (IOT)

- Difficult to install

Connected 
Signals

“delivers real-time, predictive 
traffic signal data. Their engineers 
have developed sophisticated 
techniques to predict upcoming 
signal states.”

- Does not change the light; 
adapts map directions based 
on light

- Does not improve commute 
time significantly

Surtrac “can do it cost-effectively using 
cellular communications to assess 
system performance in near real 
time.”

- Does not use  simulations to 
quicken the duration of the 
data-collecting phase

- Inactive since April 2017

 Existing Solutions

We need an 
Artificially 

intelligent Traffic 
Controller (AiTC)

Must improve the 
rate of cars/hour 

by a sufficient 
amount

Must have the 
capabilities to direct 
randomized traffic 

flow patterns

Must be able to be 
implemented in a 
feasible manner

Software must be 
able to be run and 
make decisions in 

real time

Training + Testing AiTC
How did we create and test our algorithm?

Reinforcement Q Learning Model Architecture

Layer 1

Layer 2
Output Layer

● We create a neural network that allows us to take 
future rewards into account in our training. 

● This network allows us to get a better computation 
of the reward value based on predicting benefits
○ Discount Factor = Self.gamma = 0.94

● Each Epoch contains a maximum of 1204  simulation steps
○ Reward Calculated a max. of 172 times

● Every 7 time steps, a reward is calculated and the phase is updated
○ Longer than the timing of a yellow light
○ Enough data to be useful to the training
○ Phase is long enough to let cars pass

● Reinforcement Learning vs. Supervised Learning
○ Determines labeling of good vs. bad on its own
○ Trains at a slower rate

● Why a Categorical Model Architecture?
○ 8 outputs

■ Since it is categorical, both outputs do not have to equal one
● More accurate

● Exploration Rate is 
the rate at which 
our program will 
output a random 
value

● Starts with all 
outputs being 
randomized; 
slowly decreases 
until almost all 
actions are 
generated by AI 

Learner Class in DQN.py

By customizing our reinforcement learning 
model and using multiple outputs, we 

optimized the capabilities and speed of our 
model and the traffic light system

● Q-Value = 8  outputs = 
categorical model
○ Largest value 

determines highest 
probability of 
producing most 
successful state

Input Layer
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Time vs. factor of 
prediction discounting 

f(x) = 0.94x

≈0.89 γ2 γ3 γ4
Q (Replay) Neural 
Network created 

and used for 
additional training
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self exploration rate
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Action: Agent will 
choose which traffic 
light pattern to use 
based on current 
traffic environment

Weighted Connections =
Nodes = 

SUMO creates a 
randomly seeded 
environment, and 
implements the action. 

Training Progress Reported at Each Epoch
Predictor: How many times the agent acts on environment
Map Seed: Repeatable, uniquely generated traffic flow
Passed: Cars passing through junction
End Sim Step: Time when all cars reach end of road (max. 1204)
Lost Time: Avg. time lost for all simulated cars
Reward: Rt = Σγiri (γ = discount factor; t = 7i)
Cars Left: Cars still on road after time ends
Performance: End Sim Step x Lost Time

Key Concepts of 
Reinforcement Learning
Environment: Simulation or real world 
where the measured events take place.
Observations: Simulator or sensor data 
extracted from the environment.
State: Observations of the environment 
at a particular point in time. 
Agent: Takes action based on observed 
environment to improve future state.
Action: something the agent does to 
change the environment.

The agent observes the 
current simulation after 

changing the 
environment and 

generates a reward.

Agent

Action
Environment

Observations

State

Random*

Next State

Seed

Reward*

Every n time steps, 
the agent gets input 
values from its 
current state.

*When Training

Training M
ethodology

0

1

1164

1165

Tuning + Optimization
What is our design, debug, and test process?

Results + Conclusion
How well does AiTC work? What is next?

● Failsafe function for rare unexpected or 
unresponsive action

● Debug Commands
○ Command Line Switches/Logs
○ Printing statements with Verbose levels

● Tuning
○ GUI-mode for visual confirmation
○ Program uses constants and procedures for easy 

modification of key functions
○ Clean simulation to remove warnings and make 

behavior more realistic
○ Precise commenting for readability

How We Programmed AiTC

Cmd Line: aitc.py -h

Failsafe function

Score = (avgWaitFIX * tripTimeFIX) / (avgWaitAI * tripTimeAI)

Results
We ran a diverse number of simulations. 
Our figure of merit (score) combines the 

average time loss and the time needed for all 
trips to be completed.

AiTC provides  1.26x (avg) improvement 
in quality score compared to current 

fixed timing traffic lights.

Implementation
In order for AiTC to work, we will need to have a camera and a 
processing unit that can recognize and count vehicles. 

Input from 
camera

Takes in current 
state and sent to 

agent for inference

AI computes 
phase output 

action

Traffic light acts 
upon AI’s 

instructions

Counts cars

Since many lights have already installed 
cameras, we can use object recognition systems 

to count cars waiting at an intersection.

Our research illustrates that even implementing separate, 
unconnected neural networks dramatically reduces traffic in a 

given area. Installing such versatile programs are both cost- 
efficient and feasible, serving as a firm stepping stone on the 

arduous journey towards an omniscient traffic light system. 

Big Idea - Why does this matter?

A common misconception is that neural networks can only be 
beneficial if multiple traffic lights are linked together, creating 
an interconnected system. 

Such projects, despite being the panacea of all
traffic-related issues, are expensive and time-consuming.

● Larger variety of streets
○ Train the AI to work on more uncommon streets

● Try more advanced AI techniques
○ Adversarial, Policy-Based, Combination of multiple?
○ Allow more flexibility with reward system

■ Based on end result/outcome
■ Determines reward of each action by itself

● Multiple intersections next to each other to simulate city
○ Train with connected intersections

■ Intersections communicate with each other
○ Test compatibility

● Incorporate accidents, emergency vehicles, etc.
○ Give priority when needed

● Reach out to researchers/Publicize for feedback
○ Already shared on GitHub

 Future Research

Pedestrian 
crossings

Freeway exits 
and entrances

Emergency 
Vehicles

AI Techniques for 
winning complex 
games are applicable 
to traffic optimization
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